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Abstract—Since last 10 years, various methods have been used 

for ear recognition. This paper describes the automatic 

localization of an ear and it’s segmentation from the side poses of 

face images. In this paper, authors have proposed a novel 

approach of  feature extraction of iris image using 2D Dual Tree 

Complex Wavelet Transform (2D-DT-CWT) which provides six 

sub-bands in  06 different orientations, as against three 

orientations in DWT. DT-CWT being complex, exhibits the 

property of  shift invariance.  Ear feature vectors are obtained by 

computing mean, standard deviation,  energy and entropy of  

these six sub-bands of DT-CWT  and three sub-bands of DWT.  

Canberra distance and Euclidian distance are used for matching. 

This method is implemented and tested on two image databases,  

UND database of 219 subjects  from the University of Notre 

Dame and own database created at MCTE, of 40 subjects  which 

is also used for online ear testing of system for access control at 

MCTE. False Acceptance Rate (FAR), False Rejection Rate 

(FRR), Equal Error Rate (EER) and Receiver’s Operating Curve 

(ROC) are compiled at various thresholds. The accuracy  of  

recognition is achieved above  97 %. 

Keywords-Ear recognition; ear detection;  ear biometrics; DT-

CWT; complex wavelet transform; Biometrics;  Pattern 

Recognition; Security; Image Processing; Bioinformatics; 

Computer vision. 

I.  INTRODUCTION  

Ear recognition has received considerably less attention 
than many alternative biometrics, including face, fingerprint 
and iris recognition. Ear-based recognition is of particular 
interest because it is non-invasive, and also is not affected by 
other factors such as mood, health, and/or clothing. Also, the 
appearance of an auricle (outer ear) is relatively unaffected by 
ageing, making it better suited for long-term identification[1]. 
Also, ear images can be easily taken from a distance without 
knowledge of the person concerned. Therefore ear biometric is 
suitable of surveillance, security, access control and monitoring 
applications.  

As compared to  face biometrics [2]-[4] ears have several 
advantages over complete face like reduced spatial resolution, a 
more uniform distribution of color, and less variability with 
expressions and orientation of the face. It‟s deep three-
dimensional structure makes it very difficult to counterfeit. 
Moreover, in face recognition there can be problems of 
illumination variation, pose variation and facial expressions[4]. 

Ear was first used for recognition of human being by 

Iannarelli, who used manual techniques to identify ear images. 

Samples of over 10,000 ears were studied to prove the 

distinctiveness of ear. Structure of ear does not change 

radically over time. The medical literature provides 

information that ear growth is proportional after first four 

months of birth and changes are not noticeable in the age 

group from  8 to 70 [1]. 

Thus, this ensures that the ear will occupy a special place in 

conditions requiring a high degree of  perfection. 

The remainder of this paper consists of: existing ear 

recognition techniques, localiasition and normalistion of ear, 

feature extraction using DT-CWT, matching, experimental 

results and conclusions   covered in Section-2, 3, 4, 5, 6 and 7 

respectively.  

II. EXISTING EAR RECOGNITION TECHNIQUES 

Major work on automatic ear localistion  [2]-[11] has been 
done recently in past 10 years. Automatic ear  recognition 
using Voronoi diagrams to take care of adverse effects of 
lighting, shadowing and occlusion has been presented by Burge 
and Burger [6].  In [9], Active Contour Model (or Snakes) is 
used to segment the ear from the side image of a face. Hurley, 
Nixon and Carter [7] have used force field transformations for 
ear localisation. [8][12] and [13]  make use of 3-D range 
images to extract the ear from the image of a human. However, 
the tougher challenge is to detect the ear from an intensity 
image.  A shaped model-based technique for locating human 
ears from face range images is proposed in [8]. In this method, 
the ear shape model is represented by a set of discrete 3D 
vertices corresponding to ear‟s helix and anti-helix parts.  
Ansari and Gupta  have proposed  an approach based on edges 
of outer ear helices by exploiting the parallelism between the 
outer helix curves of the ear to localize the ear[10].  Skin-color 
and contour information has been exploited for ear detection by 
Yuan and Mu [11]. In [13], authors has presented a distance 
transform and template based technique for automatic ear 
localization from a side face image. This technique first 
segments skin and non-skin regions in a face and then uses 
template based approach to find the ear location within the skin 
regions. 

Victor et al. [4] and Chang et al. [2] have researched use of 
PCA and FETET for ear recognition. Moreno et al. [5] used 2D 
intensity images of ears with three neural net approaches for 
ear recognition. Hurley [14] developed an invertible linear 
transform which transforms an ear image into a force field by 
pretending that pixels have a mutual attraction proportional to 
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their intensities and inversely proportional to the square of the 
distance between them. Yan and Bowyer [15]  have developed 
a fully automatic ear biometric system using ICP based 3D 
shape matching for recognition, and using both 2D appearance 
and 3D depth data for automatic ear extraction which not only 
extracts the ear image but also separates it from hair and 
earrings. In [16], Anupama Sana  et al. presented an  ear 
biometric system  based on discrete Haar Wavelet Transform 
whereas  Wang and Yuan [17] used Gabor wavelets and 
general discernment analysis. Wang Xiaoyun et al. [19] 
proposed block segmentation based approach whereas modular 
neural network architecture has been proposed by Gutierrez et 
al. [18].   

III. PROPOSED SYSTEM 

The block diagram of  proposed system is  shown in Fig 1. 
It consist of an image acquisition module, preprocessing and 
automatic ear localization module, DT-CWT based feature 
extraction module and matching module.  

Figure 1. Block diagram of proposed system 

A. Image Acquisition Module 

Sony DSC-HX1 (15 Megapixel and optical zoom of 20x).  
camera is used for image acquisition. Database of 240 images 
of 40 subjects for left and right ears created at MCTE and UND 
database is also used.  

B. Preprocessing and ear localisation module 

The raw image is not suitable for feature extraction due to 
its large background. Thus some pre-processing is required to 
make it suitable. The important steps involved are: gray scale 
conversion, ear detection and  scale normalization which has 
been presented in section III .  

C. Feature extraction module 

After successful ear localization, features are extracted using 

DT-CWT. The details of the same are stated in section IV. 

D. Matching  module 

Energy, Entropy, Mean and Standard Deviation of each sub-

band of DT-CWT  is  calculated to create a feature vector.  

Euclidian distance and Canbera distance as given by equation  

(1) and (2) are used as similarity measures for matching the  

feature vectors of the test image with that of the images stored 

in database(1:N) match.   
Euclidian Distance: 

        (1) 

 

Canbera Distance:  

             
 

IV. AUTOMATIC EAR LOCALISATION 

This was a very challenging task as most of the work 
carried out on this aspect is in experimental stage. The 
algorithm so designed includes the finer points of various 
algorithms and additional measures to try and further enhance 
and improve the ear localization results. The algorithm works 
as under. 

(i) Take a side face image of an individual (under varied 
background and lighting conditions). 

(ii) Creates the color transformation structure from RGB 
to LAB and apply it to the test image. The input is RGB which 
consists of three layers, Red, Green, and Blue. The output is 
LAB which consists of L*, a*, and b* layers. L* represents 
brightness and has range from 0 to 100. a* represents degree of 
redness-greenish, having  range from -100 to 100. (Positive 
values for redness, and negative values for greenish). b* 
represents degree of yellowish-bluish and has the same ranges 
as a*. 

(iii)The technique is adaptable for different skin colors and 
various lighting conditions. Since RGB representation of color 
images is not suitable for characterizing skin-color, it first 
converts the RGB color space to chromatic color space, and 
then uses the chromatic color information for further 
processing. In RGB color space, the triple components (R, G & 
B) represent not only color but also luminance which may vary 
across a person‟s face due to the ambient lighting and is not a 
reliable measure in separating skin from non-skin regions. 
Luminance can be removed from the color representation in the 
chromatic color space. 

(iv)Apply threshold to the resultant image and convert to 
binary. 

(v) A few results under varied background conditions are 
shown from  Figure 2 to Figure 4. 

 

      
Figure 2.  Side face image with open sky background 

 

 
Figure 3.  Side face image with class room background 
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Figure 4.  Side face image with class room background from UND database 

 

(vi) Once the background is removed from an image, we 
determine the nose tip of the subject and assuming an 
approximate distance between the subject‟s nose tip & ear pit 
and the average size of human ear, we crop the ear part from 
the side face of an  image. 

(vii) Thereafter we take a four pronged approach to 
determine the edge variations from top (at Helix), from side (at 
Concha and at Helix posterior) and from bottom (at Lobulo) to 
determine the ear edges and thus crop out the exact ear from an  
image. 

(viii) A two resulting ear image localized automatically 
from  side face images are shown in Figure 5. 

 

 
Figure 5.  Automatic cropping for Ear localization 

 
(ix) The cropped ear images may be of varying sizes and 

so the feature set of images may also vary. Hence the images 
are normalized to a constant size by resizing technique 
(Bilinear method). If two images are of different sizes, e.g. one 
is of size (x‟, y‟) and the other is of size (x”, y”), then the two 
images are mapped to a constant size. 

I(x‟, y‟) = I(x , y) 

I(x”, y”) = I(x , y) 

V. FEATURE EXTRACTION 

DT-CWT is formulated by Kingbury and Selesnick[20], 
[21] using two trees (real  and imaginary trees) of DWT with 
different filter real coefficients for imaginary tree  filters 
designed from the coefficients of real tree filters to overcome 
the limitations (Poor directionality, shift variance and absence 
of phase information)  of DWTs.  Kokare et al. [22] has rotated 
the 2-D non-separable filters to obtain 2-D non separable 
Rotated Complex Wavelet Filters (RCWF) and used DT-CWT 
and  RCWF for content based texture image retrieval with 
excellent retrieval results compared to many  other methods. 
Same concept with different set of filters has been used by 

Bodade et al. [23], [24] for iris recognition and obtained a 
comparable result with the benchmarked Daughman‟s 
method[25].  The details of DT-CWT and feature extraction are 
stated in following subsections. 

A. Dual Tree Complex Wavelet Transform 

In dual-tree, two real wavelet trees are used as shown in 
Figure 6, each capable of perfect reconstruction (PR). One tree 
generates the real part of the transform while the other is used 
in generating complex part[20]. As shown, {H0 (z), H1 (z)} is 
a Quadrature Mirror Filter (QMF) pair in the real-coefficient 
analysis branch. For the complex part, {G0 (z), G1 (z)} is an 
another QMF pair in the analysis branch. 

All filter pairs are orthogonal and real-valued. It has been 
shown [21] that if filters in both trees be made to be offset by 
half-sample, two wavelets satisfy Hilbert transform pair 
condition and an approximately analytic wavelet is given by 
Eq(1). 

)()()( xjxx gh                                        (1) 

 
Figure 6.  Selesnick‟s Dual Tree DWT 

 Thus, if  2)()()( )(

00     andeHG i  

then 0),()(   hg j  

                    0),(   hj                                   (2) 

      
  From Eq(1) and (2),  low pass filters after the first stage 

and  at first stage respectively are given by Eq(3):   

g0(n) = h0(n-0.5)  and  

    )1()( 00  nhng                                                        (3) 

 
 Similar relations also hold true for high pass filters of both 

the trees. 

 In this algorithm, (10, 10)-Tap near orthogonal wavelet 
filters are used in first stage and   „db7‟ filters  are used for 
higher stages in the real tree (i.e. h0 and h1)[20].The imaginary 
low pass filter is derived from the above half sample delayed 
condition. The high pass filter is the quadrature-mirror filter of 
the low pass filter. The reconstruction filters are obtained by 
time reversal of decomposition filters. All the filters used are of 
same length based on Selesnick‟s approach [20], [21], [23], 
[24] unlike Kingsbury‟s approach.  

The 2D separable DWT can be written in terms of 1D 
scaling functions (φ) and  wavelet functions(ψ) as:  
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Oriented non-separable 2D wavelet transform is derived by 

combining the sub-bands of two separable 2D DWTs.  The pair 
of conjugate filters are applied to two dimensions (x and y), 
which can be expressed by Eq(5) as given below:  

)()())(( xyyxyxyxyyxx ghghjgghhjghjgh   (5)                                                                                 

       
 The filter bank structure of 2D DT CWT, to implement 

Eq(5) is shown in Figure 7. 

 

 
Figure 7.  Filter bank structure of 2D DT CWT 

          
Tree-a and Tree-b is combined to compute the Real part of 

Eq(5) i.e Real (2D DWT)  tree of CWT  as shown in Figure 8. 
Similarly, Imaginary (2D DWT) tree of CWT can be obtained 
from tree-c and tree-d i.e.  (hxgy - gxhy), as per Eq(5). 

 
Figure 8: Formation of Real Tree DT CWT 

 

Thus, the decomposition for each mode is performed in a 
standalone mode, in subsequent stages i.e. total of 6 detailed 
coefficients are derived at each stage; three each for real and 
imaginary trees. When 3-stage decomposition is performed, at 
each stage, coefficients are oriented towards their respective

 directions as stated in Eq(4).  Following six wavelets, as given 
by Eq(6), are used to obtain oriented 2-D separable wavelets  
[20]: 
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where, ψ1,i corresponds to the coefficients derived from the 

real tree and ψ2,i  corresponds to the coefficients derived from 

the imaginary tree. They can thus be combined by Eq(7) to 

form complex wavelet coefficients. 
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 Normalization by 21 is used so that the sum/ difference 

operation constitutes an ortho-normality. These six wavelet 
sub-bands of the 2-D DT-CWT are strongly oriented in 
{+15°,+45°,+75°, -15°, -45°, -75°} direction as shown in fig(5) 
by red lines and it captures image information in those 
directions.      

Thus, in particular, 2D dual-tree wavelets are not only 
approximately analytic but are also oriented and shift invariant  
because of  their analytic structure[20].  

The impulse responses of three 2-D sub-bands (2-D  non 
separable filters for detailed coefficients)   of DWT and six 
sub-bands (2-D  non separable filters for detailed coefficients) 
of DT-CWT are shown in Figure 9. 

B. Feature Extraction 

Ear  analysis using DWT provides singularities (edges) in 
only three directions (0, 45, 90) and without phase information 
which is improved by finding the singularities, with phase 
information, in six directions (0,+/-15, +/-30, +/-45, +/-60, +/-
75, 90) and at many freq bands using DT-CWT to achieve shift 
invariant features for  better accuracy and efficiency at less 
computational cost as compared to existing methods. 

From the detailed study of  prevalent techniques already 
employed for ear recognition, it is realized that nobody had 
made use of Complex Wavelets for ear recognition. This 
realization laid the foundation of utilizing this approach to 
determine whether or not the said approach can further enhance 
and improve the recognition rates already achieved by other 
methods. As an advantage of using CWT vis-à-vis DWT, it is 
imperative to employ Dual Tree - Complex Wavelet Transform 
(Selesnick) (DT-CWT(S)) for this work. 

The DT-CWT(S) algorithm is used to design and 
implement the Dual Tree structure (up to Level 2) using 
MATLAB, employing first and second stage low and high pass 
filter coefficients given by Selesnick. The impulse responses of 
three 2-D sub-bands (2-D  non separable filters for detailed 
coefficients)   of DWT and six sub-bands (2-D non separable 
filters for detailed coefficients)  of DT-CWT are shown in 
Figure 9. 
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Figure 9. Impulse responses of sub-bands of DWT and DT-CWT. 

 
DT-CWT has 06 directional wavelets  oriented at angles of  

+15, +45, +75 in 2-Dimension. We get these six directions by 
passing the 2-D signal (image) through a real tree structure 
using the filter coefficients of both real and imaginary trees. 
The wavelet coefficients of each image which formed part of 
the Training Database were thus obtained in all the six 
directions and stored for further matching and testing. These 
directions can be seen clearly from the Figure 10 which 
represents the Level 1 decomposition of an image. 

     

                      

Figure 10.  Real   and imaginary  tree wavelet sub-band  images  

VI. EXPERIMENTAL RESULTS 

All the Training images of both the databases (MCTE 
database of 240 images of 40 subjects for right and left ears and 
UND database of 219 subjects under J-collection and G-
collection) are processed and their respective wavelet 
coefficients at  Level 1 and Level 2 are calculated. Energy, 
Entropy, Mean and Standard Deviation of each image‟s 
wavelet coefficient are then calculated and stored in an MS 
Access database. Thereafter images from the Test Set and 
random images were matched with these stored values using 
Euclidean and Canberra distance matching techniques and 
results for False Acceptance Rate (FAR), False Rejection Rate 
(FRR), Equal Error Rate (EER) and Receiver‟s Operating 

Curve (ROC) compiled at various thresholds. All the results are 
stated  in Table 1.  

Figure 11 to 14 shows the FAR, FRR and ROC of best and 
worst case of Canberra distance  and best and worst case of 
Euclidian distance when tested on  database with following 
details.  

Name Of  Data-Base : UND – Collection G 

No of Images in the Training database: 20 

No of Images in Test Database: 90 

 
Figure 11. Results using Canberra distance and feature vector of energy only 

(Worst case of Canberra Distance) 

 

 
 
Figure 12. Results using Canberra distance and feature vector of energy + std 

deviation + entropy  (Best case of Canberra Distance) 

 

Table 1. Compiled results of Avg FAR, Avg FRR and  Avg Recognition rate using Canberra and Euclidian distance for  different feature vectors   

  

Feature Vector / Distance Canberra Distance Ecludian Distance 

Avg FAR Avg FRR Recognition Rate Avg FAR Avg FRR Recognition Rate 

Energy only 8.79 % 8.79 % 91.21 % 16.66 % 5.55 % 83.34 % 
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Entropy only 6.59 % 8.79 % 93.41 % 12.22 % 6.66 % 87.88 % 

Standard Deviation  only 
 

8.79 % 
 

8.79 % 
 

91.21 % 
 

21.11 % 
 

4.44 % 
 

78.89 % 

Energy+ Entropy 3.29 % 8.79 % 96.71 %  
3.33 % 

 
8.88 % 

 
96.67 % 

Energy+ Standard Deviation 5.49 % 4.39 % 94.51 % 4.44 % 6.66 % 95.56 % 

Entropy+ Standard Deviation 5.49 % 8.79 % 94.51 %  
6.66 % 

 
4.44 % 

 
93.34 % 

Energy + Entropy +  Standard 
Deviation 

2.19 % 7.69 % 97.81 % 3.33 % 7.77 % 96.67 % 

 

 

 
Figure 13. Results using Euclidian distance and feature vector of Std 

Deviation only (Worst case of Euclidian Distance) 

 

 
Figure 14. Results using Euclidian distance and feature vector of energy + std 

deviation + entropy  (Best case of Euclidian Distance) 

 

The maximum recognition rate of 81%  is obtained when 
DWT is used for feature extraction and Canberra distance is 
used  as similarity metric for combined vector of energy, std. 
deviation and entropy. FAR, FRR and ROC for it is shown in 
figure 15. 

 
Figure 15. Results of DWT using Canberra distance and feature vector of 

energy + std deviation + entropy  (Best case of DWT) 

VII. CONCLUSIONS 

The authors have introduced a new 2D DT CWT for ear 
recognition first time because of it‟s ability to capture shift 
invariant features in 06 orientations. The experimental results 
have demonstrated the effectiveness of the proposed method in 
terms of improving the recognition rate.  

Canberra distance has shown better results than Euclidian 
distance  because it normalises the individual feature 
components before finding the distance between the two 
images.  

The best recognition rate of over 97% has been achieved 
using Canbera  distance when feature vectors of energies, 
standard deviation and entropy of sub-bands of DT-CWT are 
used together. 

The authors are working on improving the recognition rate 
by using the RCWF [22], [23], [24] in combination with DT-
CWT to obtain features in 12 orientations (06 by DT-CWT and 
06 by RCWF). 
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